TD₈ – Algèbre bilinéaire

Exercices à préparer

Exercice 1 **

Soit E l'espace vectoriel des fonctions f définies et continues sur \mathbb{R}_+ et à valeurs dans \mathbb{R} et E_2 l'ensemble des fonctions de E telles que $\int_0^{+\infty} f(x)^2 dx$ converge.

- 1. Montrer que, pour tout couple $(x,y) \in \mathbb{R}^2$, $|xy| \leqslant \frac{x^2 + y^2}{2}$
- 2. En déduire que, si f et g appartiennent à E_2 alors $\int_0^{+\infty} f(x)g(x) \, \mathrm{d}x$ converge
- 3. Montrer que E_2 est un sous-espace vectoriel de E.
- 4. On considère l'application $\langle \bullet, \bullet \rangle$ de $E_2 \times E_2$ dans \mathbb{R} définie par $\langle f, g \rangle = \int_0^{+\infty} f(x)g(x) dx$. Montrer que $\langle \bullet, \bullet \rangle$ est un produit scalaire sur E_2

Exercice 2 ***

Pour $P,Q \in \mathbb{R}_n[X]$, on pose $\varphi(P,Q) = P(0)Q(0) + \int_{-1}^1 P'(t)Q'(t) \,\mathrm{d}t$.

- 1. Montrer que φ est un produit scalaire sur $\mathbb{R}_2[X]$
- 2. On se place désormais dans le cas n=2.
 - (a) Montrer que $F = \{P \in \mathbb{R}_2[X], P(1) = 0\}$ est un sous-espace vectoriel. En donner une base.
 - (b) Déterminer une base orthonormée de F
 - (c) Déterminer la distance de X^2 à F.